ST EDWARD’S
OXFORD

13+ SCHOLARSHIP EXAMINATION
2017

MATHEMATICS
PAPER 1

1 hour
60 marks
Answer all questions.
Calculators are NOT permitted.
Extra Paper is available

Name: ____________________________
1. Circle all of the fractions below which are smaller than $\frac{1}{9}$

\[
\frac{1}{10} \quad \frac{4}{9} \quad \frac{1}{2} \quad \frac{1}{100} \quad \frac{1}{8}
\]

1 mark

(b) To the nearest per cent, what is $\frac{1}{9}$ as a percentage? Circle the nearest value.

0.9% 9% 10% 11% 19%

1 mark

(c) Complete the sentences below:

$\frac{1}{9}$ is half of

$\frac{1}{9}$ is two thirds of

There are ninths in $6\frac{1}{3}$

3 marks

TOTAL FOR THIS QUESTION 5

2. The ancient Egyptians used fractions, but only unit fractions.

$\frac{1}{3}$, $\frac{1}{8}$, $\frac{1}{5}$ are all examples of unit fractions; the numerator must be 1 and the denominator is an integer greater than 1.

For $\frac{3}{4}$, they wrote the sum $\frac{1}{2} + \frac{1}{4}$

(a) For what fraction did they write the sum $\frac{1}{2} + \frac{1}{5}$? Show your working.

.................................

1 mark
(b) They wrote \(\frac{9}{20} \) as the sum of two unit fractions. One of them was \(\frac{1}{4} \).

What was the other? You must show your working.

3. Solve these equations:

a) \(75 + 2t = 100 - 2t \)

b) \(7(5y - 3) - 10 = 2(3y - 5) - 3(3-7y) \)

c) \(\frac{x}{3} + \frac{10 - 2x}{2} = 3 \)
4. (a) A rectangle is 3a units long and 5b units wide. Write a simplified expression for the area and the perimeter of this rectangle.

Area: .. 1 mark

Perimeter: 1 mark

(b) A different rectangle has area $12a^2$ and perimeter $14a$. What are the dimensions of this rectangle?

Dimensions: by 1 mark

5. On a farm many years ago the water tanks were filled using a bucket from a well.

(a) The table shows the numbers of buckets, of different capacities, needed to fill a tank of capacity 2400 pints. Complete the table:

<table>
<thead>
<tr>
<th>Capacity of bucket (pints)</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of buckets</td>
<td></td>
<td></td>
<td>200</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

(b) Write an equation using symbols to connect T, the capacity of the tank, B, the capacity of a bucket, and N, the number of buckets.

... 1 mark

(c) Now tanks are filled through a hosepipe connected to a tap. The rate of flow through the hosepipe can be varied. The tank of capacity 4000 litres fills at a rate of 12.5 litres per minute. How long in hours and minutes does it take to fill the tank? Show your working.

...................... hours minutes 2 marks

TOTAL FOR THIS QUESTION 3
6. In one week James watches television for **26 hours**. In that week, he watched television for the **same** length of time on Monday, Tuesday, Wednesday and Thursday. On each of Friday, Saturday and Sunday, he watched television for **twice as long** as on Monday. How long did he spend watching television on **Saturday**? Write your answer in hours and minutes.

\[
\begin{align*}
& \text{ hours} & \text{ minutes} \\
\end{align*}
\]

TOTAL FOR THIS QUESTION 2

7. In the diagram (NOT TO SCALE), side AB is the same length as side AC. Side BD is the same length as side BC. Calculate the value of \(x \)

Show your working.

\[
x =
\]

TOTAL FOR THIS QUESTION 2
8. A window is made with two pieces of glass - one is semi-circular, the other is square.

The area of the square is 1m². What is the approximate area of the semi-circle? Give your answer in cm² to the nearest whole number.

9. (a) Estimate the answer to \(\frac{8.62 + 22.1}{5.23} \)

Give your answer to 1 significant figure.

.........................
1 mark

(b) **Estimate** the answer to \(\frac{28.6 \times 24.4}{5.67 \times 4.02} \)

.........................
1 mark

TOTAL FOR THIS QUESTION 2

TOTAL FOR THIS QUESTION 3
10. This is a series of patterns with grey and white tiles.

The series of patterns continues by adding each time.

(a) Complete this table:

<table>
<thead>
<tr>
<th>pattern number</th>
<th>number of grey tiles</th>
<th>number of white tiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Write an expression to show the total number of tiles in pattern number \(n \). Simplify your expression.

1 mark

11. (a) Each of these calculations has the same answer, 60. Fill in the gaps:

<table>
<thead>
<tr>
<th>(2.4 \times 25 = 60)</th>
<th>(600 \div 10 = 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24 (\times) = 60</td>
<td>6 (\div) = 60</td>
</tr>
<tr>
<td>2400 (\times) = 60</td>
<td>0.06 (\div) = 60</td>
</tr>
</tbody>
</table>
12. (a) Find the values of a and b when $p = 10$

$$a = \frac{3p^3}{2}$$

$$b = \frac{2p^2(p - 3)}{7p}$$

$$a = \ldots$$

1 mark

$$b = \ldots$$

1 mark

(b) Simplify this expression as fully as possible:

$$\frac{3cd^2}{5cd}$$

1 mark

TOTAL FOR THIS QUESTION 3

13. (a) m is an odd number. Which of the numbers below must be even, and which must be odd? Write ‘odd’ or ‘even’ under each one.

<table>
<thead>
<tr>
<th>$2m$</th>
<th>m^2</th>
<th>$3m - 1$</th>
<th>$(m - 1)(m + 1)$</th>
</tr>
</thead>
</table>

| even | odd | odd | even | odd | even | not possible to tell |

2 marks

(b) m is an odd number. Is the number $\frac{m + 1}{2}$ odd, or even, or is it not possible to tell?

| odd | even | not possible to tell |

Explain your answer.

1 mark

TOTAL FOR THIS QUESTION 3
14. Solve these simultaneous equations using an algebraic method.

\[4x + 3y = 21\]
\[2x + y = 8\]

You must show your working.

\[x = \ldots \]
\[y = \ldots \]

TOTAL FOR THIS QUESTION 3

15. Write the next two terms in each of these sequences, and give the rule for the *nth term*:

4, 8, 12, 16, ….., …….. *nth term*: …………..

4, 9, 16, 25, ….., …….. *nth term*: …………..

TOTAL FOR THIS QUESTION 4

16. To cover a distance of 10km, Jacob runs some of the way at 15 km/hr, and walks the rest of the way at 5 km/hr. His total journey time was 1 hour. How far did Jacob run?

TOTAL FOR THIS QUESTION 3

17. David puts five cards face down on a table. All have the same design on the back – on the
other side, one shows a circle, two show squares, and two show triangles. He turns two cards over. What is the probability that at least one of the cards is a square?